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Lateral inhibition patterns mediated by the Notch-Delta signaling system occur in diverse de-
velopmental contexts. These systems are based on an intercellular feedback loop in which Notch
activation leads to down-regulation of Delta. However, even in relatively well-characterized systems,
the pathway leading from Notch activation to Delta repression often remains elusive. Recent work
has shown that cis-interactions between Notch and Delta lead to mutual inactivation of both pro-
teins. Here we show that this type of cis-interaction enables a simpler and more direct mechanism
for lateral inhibition feedback than those proposed previously. In this mechanism, Notch signaling
directly up-regulates Notch expression, thereby inactivating Delta through the mutual inactivation
of Notch and Delta proteins. This mechanism, which we term Simplest Lateral Inhibition by Mutual
Inactivation (SLIMI), can implement patterning without requiring any additional genes or regula-
tory interactions. Moreover, the key interaction of Notch expression in response to Notch signaling
has been observed in some systems. Stability analysis and simulation of SLIMI mathematical mod-
els show that this lateral inhibition circuit is capable of pattern formation across a broad range of
parameter values. These results provide a simple and plausible explanation for lateral inhibition
pattern formation during development.

INTRODUCTION

Multicellular development often involves transitions
from initially near-homogeneous tissues to ‘fine-grained’
patterns involving sharp distinctions between neighbor-
ing cells. One such pattern is “lateral inhibition” (LI),
characterized by alternating patterns of ‘on’ and ‘off’
states such as those diagrammed in Fig. 1. This phe-
nomenon is pervasive, arising in situations as diverse as
butterfly wing coloration [1], neuroectoderm specification
[2], ciliated cell specification [3], and sensory organ pre-
cursors [4].

(b)(a)

FIG. 1. (a) Two initially near-equivalent cells in direct con-
tact eventually reach very different final states, characteristic
of ‘fine-grained’ patterning. (b) An ideal lateral inhibition
pattern in a two-dimensional field of cells.

LI patterning in these and other contexts is medi-
ated by signaling through the Notch-Delta system. The
Notch-Delta system (reviewed in [5–8]) consists of the
Notch receptor family and its Delta-family ligands (blue
and red molecules, respectively, in Fig. 2), along with nu-
merous participants in the signaling mechanism. Delta
interacts with Notch in two modes (Fig. 2b): activat-

ing Notch signaling in neighboring cells (trans-activation)
while inhibiting Notch signaling in the same cell (cis-
inhibition). LI patterning can occur when Notch signal-
ing downregulates Delta levels. This downregulation is
usually assumed to be mediated by a transcriptional re-
pressor, although it could also be implemented through
post-transcriptional mechanisms (Fig. 2c). Under cer-
tain conditions [9, 10] a high level of Delta in one cell will
drive all of its neighbors to low levels of Delta expression.
Conversely, a cell whose neighbors are all Delta-poor will
eventually express Delta at a high level. This generates
the lateral inhibition pattern of Fig. 1b with high-Delta
cells (red) surrounded by low-Delta cells (white).

The feedback pathway inhibiting Delta expression in
response to Notch activation may be known in certain
cases [11]. However, in many contexts it remains un-
clear what components, if any, play this role [12]. On the
other hand, in some natural systems such as vein pat-
terning [13] and lateral inhibition [14]Notch activation
is known to induce Notch expression. Further, a recent
quantitative study of the Notch signaling response func-
tion uncovered evidence for mutual cis-inhibition [15].
Not only does Delta inactivate Notch signaling in cis as
drawn in Fig. 2b, but Notch also reciprocally inactivates
Delta as drawn in Fig. 2d.

Here we report that the mutual inactivation model of
cis-inhibition admits the possibility of a remarkably sim-
ple mechanism for achieving lateral inhibition. Notch
signaling upregulation of Notch receptor expression, com-
bined with the mutual inactivation mechanism, directly
downregulates Delta levels in response to Notch signaling
(Fig. 2e). Mathematical analysis of this feedback circuit
shows that it can generate the LI pattern and provides
some advantages compared to the canonical architecture.
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FIG. 2. (a) Notch (blue) and Delta (red). (b) Notch and
Delta interact in trans (on neighboring cell surfaces) to send
the intracellular Signal domain (green) of Notch to the nu-
cleus. Delta also inhibits Notch in cis (on the same cell sur-
face). (c) A canonical lateral inhibition feedback in which
Notch signaling induces expression of an intermediate (yel-
low) that represses Delta expression. Although not explicitly
drawn in the figure, the same feedback operates in all cells.
(d) The trans and cis interactions of Notch and Delta, with
a mutual inactivation of the receptor and ligand in cis. (e)
A surprisingly simple lateral inhibition feedback network in
which Notch signaling induces Notch expression, which di-
rectly inactivates Delta by the mutual cis-inactivation mech-
anism.

We describe this as the Simplest Lateral Inhibition by
Mutual Inactivation (SLIMI) model.

RESULTS

In order to analyze the SLIMI circuit, we assume an
ideal two-dimensional lattice of hexagonal cells, each con-
taining Notch (Ni) and Delta (Di) interacting in trans
to generate Signal (Si) that induces Notch expression,
and in cis with mutual inactivation. Correspondingly,
we consider the following reactions:

Ni + Dj 
 [NiDj ]→ Si trans-activation (1)

Ni + Di 
 [NiDi]→ ∅ cis-inactivation (2)

Si → Ni Notch induction (3)

Reaction 1 refers to trans–activation in cell i by ligand on
neighboring cells j, with Notch-Delta trans association
(dissociation) rate k+

D (k−D) and signal release rate kS .
Reaction 2 refers to cis–inhibition, with Notch-Delta cis
association (dissociation) rate k+

C (k−C ) and mutual inac-
tivation rate kE . Reaction 3 refers to Signal activation of
Notch expression, which we parametrize as a contribution
to the rate of Notch production in the form of an increas-

ing Hill function (βSN
Sn
i

Kn
SN+Sn

i
). Allowing for “leakiness”

in Notch production (non-zero production rate βN in the
absence of inducer), constant constitutive production of
Delta (βD), linear degradation of each component(−γNi

and −γDi), and taking the quasi-steady-state approxi-
mation on the receptor-ligand complexes and the Signal
molecule, these reactions translate to the following set of
ordinary differential equations:

Ṅi =βN + βSN

Nn
i 〈Dj〉ni

Kn
SN + Nn

i 〈Dj〉ni
− γNi

−Ni

〈Dj〉i
kt
−Ni

Di

kc
(4)

Ḋi =βD − γDi − 〈Nj〉i
Di

kt
−Ni

Di

kc
(5)

Here we have employed the notation 〈·j〉i to denote the
average of the enclosed quantity among the neighbors

j of cell i. We define the parameters k−1
t ≡ k+DkS

k−D+kS
and

k−1
c ≡ k+CkE

k−C +kE
to denote the strengths of the trans and cis

interactions, respectively. Numerical simulation of these
equations proves that they are capable of generating the
LI pattern from a slightly (and randomly) heterogeneous
field of cells (Fig. 3a).

In order to more generally determine conditions un-
der which this system of coupled, non-linear differential
equations can generate the LI pattern, we performed a
linear stability analysis about the system’s homogeneous
steady state (hss). If the hss is stable (unstable) to small
perturbations, it follows that the LI pattern is inacces-
sible (accessible) from an initial condition near the hss.
This analysis required computing and diagonalizing the
Jacobian evaluated at the hss, and the system’s stability
there was determined by the sign of the maximal eigen-
value (known as the Maximum Lyapunov Exponent —
MLE). Where the MLE is positive the hss is unstable,
and the LI pattern is accessible.

Computing the MLE requires knowledge of component
leves at the hss, defined as the solutions to Ṅi = Ḋi = 0
subject to Ni = N and Di = D. With S ≡ ND and
Λ ≡ 1

kc
+ 1

kt
, this condition is

βN + βSN
Sn

Kn + Sn
+
γ2

Λ

S

S− βD

Λ

− ΛS = 0 (6)

We used this equation to determine the homogeneous
steady state values N∗ and D∗.

Directly diagonalizing the full Jacobian J , a matrix
of dimension twice the total number of cells in the lat-
tice, would be very difficult. Othmer and Scriven [16]
showed that the problem can be simplified by separat-
ing cell adjacency-related intercellular contributions from
the intracellular dynamics of the signaling system itself.
This approach first diagonalizes the structure matrix M
(in which Mij = 1

6 where cells i and j are neighbors and
Mij = 0 otherwise) in isolation to yield its spectrum qk.
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The eigenvalues of J are then the eigenvalues of H+qkB,
where H and B represent the modulation of production
rates due to changes in intra- and extra-cellular compo-
nents, respectively. These relationships are represented
by the partial derivatives Huv = ∂ui

vi
and Buv = ∂ui

∂vj 6=i

where u and v index the chemical species involved in the
interaction (here, Notch and Delta) and i,j are cell in-
dices.

H =

(
βSN

n
N∗ f0g0 − γ − ΛD∗ − 1

kc
N∗

− 1
kc

D∗ −γ − ΛN∗

)
(7)

B =

(
0 βSN

n
D∗ f0g0 − 1

kt
N∗

− 1
kt

D∗ 0

)
(8)

where f0 ≡ Kn
SN

Kn
SN+(N∗D∗)n and g0 ≡ (N∗D∗)n

Kn
SN+(N∗D∗)n . The

Othmer and Scriven method thus involves only diagonal-
izing one large (but sparse) matrix M representing the
cell-cell adjacency of the system, and then diagonalizing
a small two-by-two matrix.

The characteristic equations of the Jacobian are then

∣∣∣∣∣∣ βSN
n

N∗ f0g0 − γ −
(

1
kt

+ 1
kc

)
D∗ − λ

(
− 1
kc
− qk 1

kt

)
N∗ + qkβSN

n
D∗ f0g0(

− 1
kc
− qk 1

kt

)
D∗ −γ −

(
1
kc

+ 1
kt

)
N∗ − λ

∣∣∣∣∣∣ = 0

(9)

→ λ =

Γ
N − 2γ − Λ(N + D)±

√(
− Γ

N + 2γ + Λ(N + D)
)2 − 4

(
ND (Λ2 − θ2) + Λγ (N + D) + Γ (qkθ − Λ) + γ2 − Γ

Nγ
)

2

where Γ ≡ βSNnf0g0, θ ≡ 1
kc

+ qk
1
kt

, and asterisks
are omitted. The sufficient criterion for homogeneous
steady state instability is ND

(
Λ2 − θ2

)
+ Λγ (N + D) +

Γ (qkθ − Λ)+γ2− Γ
Nγ < 0. For the ideal hexagonal lattice

of cells with periodic boundary conditions that we con-
sider, the minimum qk (chosen because it corresponds
to the MLE, which is the maximual eigenvalue of J) is
calculated to be -0.5.
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FIG. 3. (a) Outcome of a numerical simulation of the SLIMI
mechanism colored as in Fig. 1b. (b) Maximum Lyapunov
Exponent (MLE) computed across a range of Delta produc-
tion rates βD and maximal Notch production rates βSN, with
other parameters fixed including n = 1. The region within
the contour is above zero, indicating instability of the homo-
geneous steady state and thus the potential to generate the LI
pattern. (c) MLE computed at n = 2 with increasing levels
of ‘leakiness’ in Notch expression, leading to some shrinkage
of the patterning-permissive parameter range.

The numerical solutions for the MLE plotted in Fig.
3b for particular choices of parameters are illuminat-
ing. Even with no explicitly sharp molecular interactions
(n = 1), there is a sizable region bounded by minimal
and maximal βD values over which the MLE is positive,
and thus the system may achieve a lateral inhibition pat-
tern as shown in Fig. 3b. A potential shortcoming of the
SLIMI mechanism is its sensitivity to leakiness in Notch
expression (i.e. non-negligible βN). Fig. 3c plots the
MLE profile for progressively greater leakiness in Notch
expression indexed as a percentage of maximal Notch in-
duction (i.e., βN = lβSN for l described above the appro-
priate plot), from which we see that the SLIMI model is
fairly robust.

DISCUSSION

The SLIMI model described here is an extraordinar-
ily simple approach to LI patterning through the Notch-
Delta signaling system, conceivable only by virtue of the
previously-unappreciated inactivation of Delta by Notch
in cis. It is appealing for a number of reasons. First, we
have shown that SLIMI is a feedback architecture that
supports the formation of the LI pattern across a wide
range of parameters. Second, it does so even in the pres-
ence of non-ideal leakiness in the regulatory feedback.
Third, and perhaps most dramatically, it does not re-
quire the action of any hypothetical intermediate factor.
The sole necessary regulatory interaction has been shown
to occur naturally [13, 14] in at least some contexts.

Appealing though these features of SLIMI may be,
it remains uncertain if natural systems in fact utilize
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this feedback to generate LI patterns. Results regarding
Notch-Delta feedback elements operating in lateral inhi-
bition patterning processes are varied at present, seem-
ingly indicating a degree of context specificity [17, 18]
that defies efforts to postulate a universal mechanism.
As mentioned earlier, there is some evidence for increased
Notch expression rates induced by Notch signaling in LI-
patterning systems [14], but the contribution of this rel-
ative to that of other feedbacks in driving the patterning
process is unknown.
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