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I. Constructions of plasmids and strains 

KpnI−PGAL1−BamHI, BamHI−YFP−EcoRI fragments were cloned into pRS402 

backbone upstream of CYC1 transcriptional terminator. The PGAL1 promoter sequence 

corresponds to the 669 base-pair region directly upstream of the start codon of the GAL1 

gene. The KanMX4 and NatMX4 gene deletion cassettes (1, 2) were used to delete 

specific GAL network genes. Integrations were verified by polymerase chain reaction 

(PCR). All strains are diploid and were derived from W303. Complete descriptions of the 

strains used in this study can be found in Table S1. 

 

In Fig. S1 we show an schematic representing the construction of the first-order 

dosage-varied yeast strains. Each rectangle denotes a diploid strain that was dosage-

halved in one of the four regulatory genes of the network.  
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II. Yeast strains used in this study 

Strain Genotype 

MA0491 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal2::KanMX/GAL2 

MA0492 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal3::KanMX/GAL3 

MA0493 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal4::KanMX/GAL4 

MA0494 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal80::KanMX/GAL80 

MA0496 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP  

MA0614 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal2::KanMX/GAL2, GAL3/gal3::KanMX 

MA0615 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal2::KanMX/GAL2, GAL4/gal4::KanMX 

MA0616 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal2::KanMX/GAL2, GAL80/gal80::KanMX 

MA0617 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal3::KanMX/GAL3, GAL4/gal4::KanMX 

MA0618 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal3::KanMX/GAL3, GAL80/gal80::KanMX 

MA0619 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal4::KanMX/GAL4, GAL80/gal80::KanMX 

MA0620 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal2::KanMX/GAL2, gal3::NatMX/GAL3, GAL4/gal4::KanMX 

MA0621 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal3::KanMX/GAL3, gal4::NatMX/GAL4, GAL80/gal80::KanMX 

MA0622 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, GAL2/gal2::KanMX, gal3::NatMX/GAL3, gal80::KanMX/GAL80 

MA0623 MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, GAL2/gal2::KanMX, gal4::KanMX/GAL4, gal80::NatMX/GAL80 

MA0625 
MATa/, leu2/leu2::LEU2, his3::HIS3/his3, ade2::ADE2-PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, GAL2/gal2::KanMX, gal3::NatMX/GAL3, GAL4/gal4::NatMX, 
gal80::KanMX/GAL80 

 
Table S1. Yeast strains used in this study. 
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III. Growth conditions and media 

Cultures were grown in synthetic dropout media with the appropriate amino-acid 

supplements. During the overnight growth period (20 hours in 30°C shaker), 2% 

raffinose was used as the carbon source. The overnight growth period was followed by 

the induction period (20 hours in 30°C shaker), with cultures containing 0.1% glucose 

and 0-0.4% galactose as carbon sources. 0.1% glucose instead of raffinose was used as 

a background carbon source to ensure a constant growth rate across different galactose 

concentrations. Glucose at this concentration does not fully repress GAL network 

activity. After the induction period, the expression distributions were determined by flow 

cytometry (FACScan; Becton Dickinson). The OD600 values at the end of the induction 

period were kept low (OD600 ≤ 0.322) to prevent nutrient depletion. The culture volume 

was 10ml during both overnight growth and induction periods. 

 

IV. Additional view of the data and quantification of the effect of each gene 

 In Fig. S2, we show another view of the experimental data presented in Fig. 3, 

comparing the inducibility profile of each strain analyzed against that of the wild-type. 

 

 In Fig. 3C, we quantified the average contribution of the second copy of each 

regulatory gene to network inducibility in the following manner. Separately for each 

gene, all genetic backgrounds in which that gene was dosage-halved were identified, 

corresponding to 8 out of 16 strain backgrounds. Inducibility values of the strains that 

carry both copies of a specific gene were subtracted from the inducibility values of the 

strains carrying one copy of that gene in an otherwise identical genetic background and 

these differences were averaged for each gene. To complement Fig. 3C, in Fig. S3 we 

report the average contribution of halving each of the regulatory genes involved using a 

metric based on the average squared differences (denoted 𝜒", fig. S3A) across different 

galactose concentrations and genetic backgrounds. This measure quantifies the average 

contribution of each gene regardless of its sign and it complements the quantification 

based on an average of the differences (denoted Δ) presented in Fig. 3C and fig. S3B.  
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V. Model specification 

We consider an effective stochastic model in which a given promoter site of each 

of the GAL regulated genes (GAL2, GAL3 and GAL80) can be in either a state of active 

transcription (ON-state) or in a state in which transcription occurs less often (OFF-state) 

(3, 4). Each of these states is characterized by its typical transcription rate. We chose to 

parameterize the system so that one copy of the GALi gene will produce the 

corresponding proteins at rate 𝜃%  (which coarse-grains the processes of transcription, 

translation and protein folding) when in the ON-state and at rate 𝜆𝜃%, when in the OFF-

state. So 𝜆 represents the relative transcriptional strength of the OFF-state compared to 

the ON-state. 

We consider that slow stochastic transitions between these transcriptional states 

are possible and that the total concentration of the different regulatory proteins affects 

the rate at which the OFF → ON transition takes place. 

OFF        
ℎ 𝜌(𝑥", 𝑥1, 𝑥2, 𝑥34)

ℎ
       ON (1)  

In this scheme the parameter ℎ represents a typical timescale at which these transitions 

take place and 𝜌 is a function that quantifies how the total concentrations of the different 

GAL proteins (𝑥", 𝑥1, 𝑥2, 𝑥34) affect the OFF → ON transition. This description is valid as 

long as the molecular interactions that shape the regulating function 𝜌 occur much more 

rapidly than the typical timescale at which protein concentrations change due to the 

processes of transcription, translation, and protein dilution/degradation. 

We parameterized 𝜌 by taking into account what is known about the way the 

different GAL proteins interact with each other and affect transcription. In Fig. S4 we 

represent schematically the main interactions between the proteins involved.  

First, it is known that the GAL4 protein is the main transcriptional activator when 

it is not bound by GAL80 proteins, so we proposed the form  

𝜌 = 7
𝑥2∗

𝐾2
:
;

 (2)  

where 𝐾2 represents the effective typical concentration scale of the interaction, 𝜂 > 0 is 

its typical effective nonlinearity, and 𝑥2∗ is the concentration of GAL4 that is not bound by 

GAL80 and can therefore freely activate transcription. Instead of writing a set of 



5 
 

reactions for describing how 𝑥2∗ depends on the total concentrations of the GAL network 

proteins, we propose to use simple functional forms that effectively describe the main 

nature of the interactions. In these functional forms, the molecular interactions are 

characterized by typical concentration scales of action for each protein and by typical 

degrees of nonlinearity quantified by positive exponents. In this case, we know that the 

amount of free GAL4 proteins will be a decreasing function of the concentration of 

GAL80 proteins in the nucleus and an increasing function of the total concentration of 

GAL4 proteins. Therefore, we propose to use the form 

𝑥2∗ =
𝑥2

1 + ABCD
∗

ECD
F
G (3)  

where 𝑥34∗  is the concentration of GAL80 proteins in the nucleus. This quantity, in turn, is 

regulated by the active GAL3 proteins due to sequestration 

𝑥34∗ =
𝑥34

1 + ABH
∗

EH
F
I (4)  

where 𝑥1∗  is the concentration of active GAL3 proteins. The internal galactose 

concentration, 𝑔∗, regulates the activation of GAL3 proteins and therefore we propose to 

write 

𝑥1∗ =
𝑥1

1 + AK∗ELF
MN. (5)  

Note that in this case the number of active GAL3 proteins is an increasing function of the 

concentration of internal galactose because we assume 𝜈 > 0. Finally, the concentration 

of internal galactose is regulated by the concentration of galactose with which the cells 

were grown, 𝑔, and the amount of GAL2 proteins (the galactose permease) and so we 

write  

𝑔∗ =
𝑔

1 + ABQEQF
MR. (6)  

Equations (2) to (6) describe how the rate of the OFF → ON transition is regulated 

by the total concentrations of the different proteins involved as well as the concentration 

of external galactose.  
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To finalize the specification of the model, we also assumed that the protein 

degradation rates were slow compared to the growth rate and so we only included the 

effect of the dilution of proteins at rate 𝛾 , the average growth rate of yeast in the 

laboratory. 

We simulated this system by using a custom-written C++ implementation of the 

Gillespie algorithm, which considered the production of proteins, their dilution due to cell 

growth, and the transitions between the transcriptional states as first-order stochastic 

reactions. In Fig. S5 we show sample trajectories for the different variables in a 

simulation corresponding to the parameters reported in Sections VI and VIII. 

 

VI. Constraints on model parameters 

 To keep our model realistic, we constrained the values of several parameters to 

previously measured quantities. However, some quantities (especially the effective 

parameters we used) were difficult to estimate based on published work and therefore 

we extracted them out by fitting the model to our data. 

 On one hand, the doubling time of yeast in the environments used in this study is 

about 90 minutes, which imposes the constraint 𝛾 ≈ 0.46 h-1. 

 Previous high-throughput studies identified fold-differences in transcript levels for 

several yeast genes under two different growth conditions. More specifically, yeast cells 

were grown in two separate environments, one promoting the expression of the GAL 

genes and one repressing it. Average differences of about 5.5-fold and 3.7-fold were 

reported for GAL3 and GAL80, respectively (5). A high-throughput study that quantified 

the amount and localization of different yeast proteins reported that there were about 

800 GAL3 and 700 GAL80 proteins per cell when the GAL genes were repressed (6), 

which in the context of the proposed model would correspond to the situation in which 

these genes are in the OFF transcriptional state. Considering these observations and 

with the aim of simplifying the description further, we assumed that all GAL-regulated 

genes in the network follow a similar regulation scheme and fixed the values of the 

parameters 𝜃1, 𝜃34 and 𝜆 to obtain basal expression levels of about 750 proteins per cell 

and a 5-fold increase in protein levels when the network is fully induced. So, taking the 

dilution rate into account, this implies the constraints 𝜃1 ≅ 𝜃34 ≅ 1725 proteins/h and 

𝜆 ≅ 0.2. Related experimental evidence for GAL2 is more elusive and for the sake of 
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simplicity we assumed the same transcription rate as for GAL3 and GAL80. The same 

studies also reported that the level of GAL4 transcripts does not change significantly 

between galactose-free and galactose-rich media (5) and that GAL4 proteins are present 

at a concentration of about 200 proteins per cell (6), which implies the constraint 𝜃2 ≅ 92 

proteins/h. 

 We note that in the model at hand the stochasticity in the change of the 

transcriptional plan is described by slow transitions between two different states. In this 

framework, the fluctuations in protein expression levels play a secondary role in 

establishing the fraction of active cells under a given condition, though they still play a 

major role in shaping the distributions associated with OFF and ON expression states. 

Furthermore, the way we set up the regulation scheme indicated by equations (2)-(6) 

allows us to interpret the constants 𝐾%  as being expressed in terms of the typical 

concentrations of the associated proteins. Therefore, we don’t  lose generality by using 

parameter values 𝜃% that might deviate slightly from experimental measurements. 

 The values of the parameters used in simulations and fits presented in this study 

can be found in Table S2. These parameters were constrained with respect to the 

previous studies described in this section. 

Parameter Value 
𝜃" 1500 proteins/h 
𝜃1 1500 proteins/h 
𝜃2 100 proteins/h 
𝜃34 1500 proteins/h 
𝜆 0.2 
𝛾 0.46 h-1 

 
Table S2. Parameters fixed based on previous observations. 

 In order to obtain OFF and ON expression states that are well-separated from 

each other, the time that it takes for protein levels to equilibrate has to be shorter than 

the typical timescale of the transitions between the two transcriptional states. We 

quantified the timescale of transitions through the parameter ℎ in equation (1). Exploring 

a range of values for this quantity, we found reasonable agreement with the 

experimental results for ℎ = 2.5 h-1 (Fig. S5 and Fig. S6A-C). If the value of ℎ is too high 

(Fig. S6C) the distribution of protein numbers becomes monomodal; on the other hand if 
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this parameter is too low (Fig. S6A), the dynamics of establishment of fractions would be 

too slow compared to the experimental observations and in the case of multiple 

promoters it would lead to the appearance of three distinct expression states, which is 

something that is not observed experimentally. We also note that all inferences 

presented in this work are based on the analytical approximation described in the next 

section, where the exact value of the parameter ℎ becomes immaterial. 

 

VII. Analytical approximation 

 The stochastic simulation of the model described above is computationally time 

consuming. To simplify the exploration of model parameters and/or alternative models, 

we developed an approximation for the steady-state fraction of actively transcribing cells 

in a macroscopic population. We note that the presentation of the approximation 

proposed here is not a rigorous derivation. We based it on intuition and heuristic 

observations, and we eventually confirmed its power by comparing inferences drawn 

from it to those obtained from detailed stochastic simulations (Fig. S6D). 

 For one cell, we can approximate the time-evolution of the number of proteins 

associated with each GAL-network-regulated gene with a set of Langevin equations 

(7-9) of the form 

𝑥V̇ = 𝜃%[𝜙 + 𝜆(1 − 𝜙)] − 𝛾𝑥% + 𝜉% (7)  

where 𝑥% represents the concentration of the protein associated with the GALi gene, 𝜙 is 

a random binary variable that indicates whether the cell is transcribing or not, and 𝜉% is a 

random variable that approximates the intrinsic stochasticity associated with the 

processes of protein production and dilution. 

 An equation for the evolution of mean protein numbers across a population of 

cells, 〈𝑥%〉, can be obtained by averaging equation (7) above. If we assume that the 

intrinsic noise in protein expression can be neglected we obtain a set of equations of the 

form: 

𝑥V̇ = 𝜃%[𝜆 + (1 − 𝜆)〈𝜙〉] − 𝛾〈𝑥%〉 (8)  

where 〈𝜙〉  represents the fraction of cells that are actively transcribing. Following a 

mean-field approximation approach, we estimate the fraction 〈𝜙〉 with the value that we 
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would infer from assuming a constant background of protein concentrations equal to 

their average values, namely: 

〈𝜙〉 ≅ 〈
𝑘OFF→ON(𝑥", 𝑥1, 𝑥2, 𝑥34)

𝑘OFF→ON(𝑥", 𝑥1, 𝑥2, 𝑥34) + 𝑘ON→OFF
〉 ≅

1

1 + 𝑘ON→OFF
𝑘OFF→ON(〈𝑥"〉, 〈𝑥1〉, 〈𝑥2〉, 〈𝑥34〉)

=
1

1 + [𝜌(〈𝑥"〉, 〈𝑥1〉, 〈𝑥2〉, 〈𝑥34〉)]M`
≡ 𝑓(〈𝑥"〉, 〈𝑥1〉, 〈𝑥2〉, 〈𝑥34〉) 

(9)  

where we have explicitly incorporated the parameterization proposed in equation (1) and 

where we have assumed that the different copies of each promoter act in a correlated 

way due to the effect of the different proteins involved. 

 Taking into account that GAL4 is not subject to regulation, the argument above 

implies that the dynamics of the system can be approximated by the system 

⎩
⎨

⎧
𝑥"̇ = 𝜃"[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥"
𝑥1̇ = 𝜃1[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥1
𝑥2̇ = 𝜃2 − 𝛾𝑥2
𝑥34̇ = 𝜃34[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥34

f (10)  

where we have dropped the angled brackets to simplify notation. 

In steady state, in order to obtain a self-consistent solution, the following set of 

algebraic equations must be satisfied: 

⎩
⎨

⎧
0 = 𝜃"[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥"
0 = 𝜃1[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥1
0 = 𝜃2 − 𝛾𝑥2
0 = 𝜃34[𝜆 + (1 − 𝜆)𝑓(𝑥", 𝑥1, 𝑥2, 𝑥34)] − 𝛾𝑥34

f (11)  

We note that these equations imply that in equilibrium the concentrations of GAL2, 

GAL3, and GAL80 will be proportional to each other through their relative transcriptional 

strengths, 

𝑥"
𝜃"
=
𝑥1
𝜃1
=
𝑥34
𝜃34

, (12)  

which allows us to reduce this set of relations to just one equation: 

0 = 𝜃1 g𝜆 + (1 − 𝜆)𝑓 A
hQ
hH
𝑥1, 𝑥1,

hi
j ,

hCD
hH
𝑥1Fk − 𝛾𝑥1. (13)  

Solving this equation for 𝑥1 and then computing 𝑓 AlQlH𝑥1, 𝑥1,
li
m ,

lCD
lH
𝑥1F allows us to obtain 

an approximation for the fraction of actively transcribing cells in a given population. We 
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solved this equation by bisection search considering as extrema the minimum and 

maximum possible GAL3 concentrations that can be achieved under this scheme (𝜆𝜃1/𝛾 

and 𝜃1/𝛾 respectively).  

 In Fig. S6D, we compare the results obtained from detailed simulations of the 

stochastic process specified in Section V to the analytical approximation proposed in this 

section for a range of galactose values that includes those used in the experiments 

presented in this article. We observe reasonable agreement, which supports the 

usefulness of the approximation proposed as a proxy for studying the behavior of the 

system in a manner that is less taxing from the computational point of view. 

 

VIII. Fitting procedure and best fit results 

We determined the set of parameters that best describes the data by confronting 

the measurements with the model predictions using a Bayesian inference approach (10). 

Briefly, we assumed that for a given set of parameters, the likelihood of observing each 

measurement follows a normal distribution centered on the value indicated by the model 

and with an estimated uncertainty of 10% which is representative of the repeatability of 

the experiments. Applying Bayes theorem, this defines a distribution over parameter 

space where each parameter set gets weighed according to its likelihood of representing 

the data. We sampled this distribution using a Metropolis-Hastings algorithm, which 

allowed us to obtain estimates of the parameter set that has the highest likelihood of 

being a good description of the data as well as the corresponding uncertainties. 

The sampling algorithm was run by following 10 independent Markov chains 

starting from the point indicated in Table S3. For each parameter, normal distributions 

with widths as indicated in the same table and centered in the previous point were used 

as jump distributions. We also imposed lower and upper bounds as indicated but the 

chains stayed away from the boundaries except in the case of  

𝐾", which we relate to the fact that the experimental system does not exhibit much 

sensitivity to changes in the dosage of GAL2 in the conditions explored. Each chain was 

followed for 10000 iterations and only the second half of the simulations was used to 

draw inferences. 
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Parameter Sampling parameters 
symbol Unit starting point Jump width lower bound upper bound 
𝐾" proteins 1000 200 0.1 4000 
𝐾K proteins 0.03 0.01 0.002 1 
𝐾1 proteins 2.0 0.5 0.1 10 
𝐾34 proteins 8.0 0.5 0.3 200 
𝐾2 proteins 1.0 2.5 0.1 200 
𝜇 - 0.50 0.25 0.05 20 
𝜈 - 1.00 0.20 0.05 20 
𝛼 - 0.85 0.02 0.04 20 
𝛽 - 5.0 0.5 0.05 50 
𝜂 - 1.5 0.2 0.05 20 

Table S3. Summary of the parameters used in the fitting procedure. 

In Fig. S7, we show the inferred distributions for each parameter and in Table S4 

we report first order statistics that describe the inferred values for each fit parameter. 

Parameter Inferences 
Symbol Unit Best Mean std 
𝐾" proteins 600 1700 1000 
𝐾K proteins 0.052 0.040 0.008 
𝐾1 proteins 4.1 2.9 0.7 
𝐾34 proteins 8 8 2 
𝐾2 proteins 2 8 6 
𝜇 - 0.9 0.6 0.2 
𝜈 - 1.3 1.5 0.2 
𝛼 - 0.85 0.82 0.02 
𝛽 - 6.1 6.6 0.7 
𝜂 - 1.6 1.8 0.2 

Table S4. Summary of the inferred parameters statistics. 

 

IX. Mathematical analysis of the properties of one-gene and two-gene networks 

In order to investigate the necessary features that can make natural gene 

networks display dosage invariance, we consider a set of genes that are subject to a 

common regulation scheme. The general question that we are interested in addressing 

is: what conditions on the regulation scheme guarantee the activity of the transcriptional 
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center to be invariant to proportional changes in the transcription rate of all the genes 

involved? Such changes would be produced as an organism undergoes a change in 

ploidy, as chromosomes are replicated throughout cell cycle, in genome-wide duplication 

or loss events and/or by global noise in gene expression. 

We consider that each gene is transcribed and then translated proportionally to 

the activity of its transcription center (a number between 0 and 1 that might represent, 

for instance, the fractional occupancy of active promoter sites), the proportionality 

constant being the maximal transcriptional rate associated with the gene. We assume 

that all proteins are effectively degraded at the cell-division rate (𝛾), thinking about a 

situation in which the lifetime of the proteins is much longer than the cell-division time. 

We further consider that proteins generated off each gene interact with each other on 

fast timescales and that this interaction defines the state of the transcriptional center. 

Finally, we consider a mean field approximation in the sense defined in Section VII. 

Under these conditions, we describe the time evolution of the concentrations of 

the relevant proteins by the following set of differential equations: 

⎩
⎪
⎨

⎪
⎧
𝑑𝑥`
𝑑𝑡 = 𝜃`𝑓(𝜌, 𝑥`,⋯ , 𝑥v) − 𝛾𝑥`,

⋮
d𝑥v
d𝑡 = 𝜃v𝑓(𝜌, 𝑥`,⋯ , 𝑥v) − 𝛾𝑥v.

f (14)  

In these equations, 𝑥% represents the average total concentration of the protein coded by 

the i-th gene, 𝜃% is the transcriptional strength associated with it, 𝛾 is the dilution rate, 𝜌 

is some external control parameter (e.g., galactose in the case of GAL network) and 

𝑓(𝜌, 𝑥`,⋯ , 𝑥v)  is a dimensionless quantity that takes values in [0, 1] and represents the 

activity level of the transcriptional system under consideration. We can think that 𝑓 

represents the fraction of active promoter sites. Under the context of this framework, one 

approach to formalize the question we are interested in addressing is to ask: what family 

of functions 𝑓  describe systems in which the steady state value of 𝑓  is invariant to 

proportional changes in all the 𝜃s  for a wide range of the control parameter 𝜌  (i.e., 
exploring the full range of values of 𝑓, so as to get an inducible system). 
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 One-dimensional case 

Let's first consider the simplest possible case: a network with just one gene. At 

steady state, we have 

𝜃𝑓(𝜌, 𝑥) = 𝛾𝑥. (15)  

Mathematically, in order for a function to be invariant with respect to a variable, 

its derivative with respect to that variable has to be zero. Taking the derivative of the 

above expression with respect to 𝜃 we get 

𝑓 + 𝜃
∂𝑓
∂𝑥
d𝑥
d𝜃 = 𝛾

d𝑥
d𝜃 (16)  

from where we obtain that d{
dh
= ∂{

∂B
dB
dh
=

{∂|∂}
jMh∂|∂}

. 

We conclude that for the system to be invariant for nontrivial fractions (𝑓 ≠ 0) we 

need ∂{
∂B
= 0 at the value of 𝑥 that solves the steady state equation. But if the system is to 

be inducible, we should assume that the value of 𝑥 will change as we change 𝜌 and 

therefore in order to get invariance across a range of induction conditions we need 𝑓 to 

be independent of 𝑥, i.e., we cannot have feedback at all. 

This means that the only possible way of getting an invariant system with just 

one species is if the system is not autoregulated, which makes the situation trivial: if the 

state of a promoter is not affected by the proteins it codes for, its fractional occupancy 

will be invariant to changes in its transcriptional strength. This situation corresponds to 

the case of a constitutively regulated gene. Having more copies of that gene in the cell is 

not expected to impose any change in the state of its constitutive promoter. 

 

 Two-dimensional case 

Now we consider a network composed of two genes. The system under 

consideration is represented by the following set of differential equations: 

�

𝑑𝑥`
𝑑𝑡 = 𝜃`𝑓(𝜌, 𝑥`, 𝑥") − 𝛾𝑥`,
d𝑥"
d𝑡 = 𝜃"𝑓(𝜌, 𝑥`, 𝑥") − 𝛾𝑥".

f (17)  
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and we are interested in studying how the steady state value of 𝑓 will be affected by 

proportional changes in 𝜃` and 𝜃". 

Let's first note that using the same regulation scheme for the two genes imposes 

the condition that at steady state we must have (all variables represent steady state 

values from now on) 

𝜃`
𝜃"
=
𝑥`
𝑥"

 (18)  

which implies that whatever change 𝑥` might undergo, 𝑥" is going to suffer a proportional 

modification as well. To study system behavior with respect proportional changes in 𝜃` 

and 𝜃", we introduce an additional parameter (𝛿) in the following way: 

�
(1 + 𝛿)𝜃`𝑓(𝜌, 𝑥`, 𝑥") = 𝛾𝑥`,
(1 + 𝛿)𝜃"𝑓(𝜌, 𝑥`, 𝑥") = 𝛾𝑥",

f (19)  

which allows us to vary the transcriptional rates in a proportional manner and to explore 

how the value of 𝑓 is affected by such changes. 

Taking derivatives of both sides of the first equation in (19) with respect to 𝛿, we 

obtain 

𝜃`𝑓 + (1 + 𝛿)𝜃` �
∂𝑓
∂𝑥`

d𝑥`
d𝛿

+
∂𝑓
∂𝑥"

d𝑥"
d𝛿 �

= 𝛾
d𝑥`
d𝛿

. (20)  

Using equation (18) relating 𝑥` to 𝑥" at steady state, we can write dBQ
d�
= hQ

h�

dB�
d�

 and 

plugging this expression into (20) we can solve the resulting equation for dB�
d�

:    

d𝑥`
d𝛿 =

𝜃`𝑓

𝛾 − (1 + 𝛿) 7𝜃`
∂𝑓
∂𝑥`

+ 𝜃"
∂𝑓
∂𝑥"

:
 (21)  

where everything is evaluated at steady state. This implies that the change in 𝑓 due to 

some small change in 𝛿 is proportional to 

d𝑓
d𝛿 =

7𝜃`
∂𝑓
∂𝑥`

+ 𝜃"
∂𝑓
∂𝑥"

: 𝑓

𝛾 − (1 + 𝛿) 7𝜃`
∂𝑓
∂𝑥`

+ 𝜃"
∂𝑓
∂𝑥"

:
. (22)  

We conclude that for the system to be invariant with generality we need to satisfy 
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𝜃`
∂𝑓
∂𝑥`

+ 𝜃"
∂𝑓
∂𝑥"

= 0 (23)  

at steady state, but this implies that the signs of ∂{
∂B�

 and ∂{
∂BQ

 have to be different; i.e., we 

need one activator and one inhibitor. 

Therefore, a gene circuit with two components that are regulated by the same 

transcriptional machinery requires components of opposite sign for the activity of the 

system to be invariant to network dosage. Contrary to the one-dimensional case, the 

genes here do not have to give up their feedback regulation schemes. This describes a 

minimal condition necessary to build dosage-invariant phenotypes into gene networks. In 

the main body of the paper we discuss additional requirements related to the topology of 

the underlying network and the effective stoichiometry of intermediate interactions. 

 

Analysis of alternative two-dimensional topologies 

As described in the main text, to further explore if certain wiring topologies of 

generic 2-component generic networks would make it easier or harder for cells to display 

network dosage invariance, we performed numerical investigations on the possible 

network topologies in which an activator and an inhibitor are controlled by similar 

transcriptional machineries and analyzed their inducibility properties.  

In order to do so we computed numerical approximations to the dynamical 

system representing the evolution of the overall concentrations of activator (𝑎 ) and 

inhibiting (𝑖) agents for systems with different regulation schemes. i.e. we numerically 

solved the equations 

�𝑎̇ = 𝜃�[𝜆 + (1 − 𝜆)𝑓(𝑔, 𝑎, 𝑖)] − 𝛾𝑎
𝚤̇ = 𝜃%[𝜆 + (1 − 𝜆)𝑓(𝑔, 𝑎, 𝑖)] − 𝛾𝑖

f (24)  

over a time interval of 𝑡 = 24 h and computed the value of 𝑓 corresponding to the values 

of 𝑎 and 𝑖 achieved at that point. In these equations the functional form of 𝑓 quantifies 

the regulation scheme of the system. We considered the possibilities described in Fig. 

4A, in each of which the function 𝑓 is parameterized by 4 numbers that quantify the scale 

of action of the activator (𝑆�), the scale of action of the inhibitor (𝑆%), the nonlinearity with 

which the activator acts on downstream targets (𝛼) and a corresponding parameter for 

the inhibitor (𝛽). The parameter 𝑔 in these equations represents the concentration of an 
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external activator of the system and, in analogy to how galactose affects the GAL 

system in yeast, we introduced its effect by the effective rescaling of the scale of action 

of the activator. We note that in the chosen parameterization this value is a 

dimensionless quantity. In the case of the network topology presented in the center 

column of Fig. 4, under some conditions this procedure yielded multiple solutions and we 

averaged them across ten random initial conditions (𝑎4, 𝑖4) distributed uniformly across a 

range of values enclosing the possible physiological steady states that 𝑎 and 𝑖  could 

attain (𝑎4 ∈ [0, 𝜃�/𝛾], 𝑖4 ∈ [0, 𝜃%/𝛾]) to obtain a mean inducibility level for each galactose 

concentration. 

To investigate which of these systems had the property of both network dosage 

invariance and inducibility we randomly sampled the parameters characterizing the 

regulating functional forms over large ranges (Table S5) and fed them into the 

quantitative model to obtain numerical inducibility curves corresponding to the networks 

carrying one or two copies of the network genes. For each pair of these numerical 

curves, we calculated the level of dosage invariance by quantifying the area between the 

two curves, large areas corresponding to large penalties to network-dosage invariance, 

and vice versa. We also quantified the relative inducibility levels of our numerical curves 

relative to a reference induction profile (Fig. S8A). Large differences from the reference 

curve corresponded to large penalties to inducibility. A comparative examination of the 

dot-plots for each network configuration reveals that the topologies at left and right allow 

their host networks to be both dosage-invariant and inducible (Fig. 4B). The specific 

interaction scheme in the two networks is essential for the systems to display such 

behavior (Fig. 4A, left and right panels). However, the choice between activator and 

inhibitor in directly influencing the transcription is not essential as long as the effect of 

the other is indirect.  

Sampled parameters  Fixed parameters 
Parameter Sampling Lower bound Upper bound Parameter Value 

𝑆� logarithmic 10-2 102 𝜃� 1500 
𝑆% logarithmic 10-3 101 𝜃% 1500 
𝛼 linear 0.5 5 𝛾 0.46 
𝛽 linear 0.5 5 𝜆 0.2 

Table S5. Parameters used for sampling generic two-component functional forms. 
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The green areas in Fig. 4B enclose the parameters corresponding to dosage-

invariant and inducible networks (low penalties in both axes). For each point populating 

the green regions, we extracted out the values of the set of 4 parameters (Fig. S8B, 

S8C). The parameter that quantifies the nonlinearity of the interaction between the 

inhibiting and activating agents (𝛼 in Fig. 4C and 𝛽 in Fig. 4D) was the only one severely 

restricted in the values it could take; with values displaying a narrow distribution 

centered around 1. This finding suggests a further requirement on the network 

architecture: the effective stoichiometry of the interaction between the activating and 

inhibiting agents has to be 1-to-1 in order to produce a system that is both inducible and 

network-dosage invariant. 

            To further understand the stoichoimetry requirement, it proves useful to look at 

how the functional form in the left panel of Fig. 4A becomes compensated for parallel 

changes in 𝑎 and 𝑖 when  equals 1. In this case the functional form reduces to 

𝑓 =
1

1 + � 𝑆%𝑖
1 + 𝑆�𝑔𝑎

�
G. (25)  

In the limit 𝑆�𝑔𝑎 ≫ 1, which we can interpret as identifying a situation with a 

sufficient amount of activator, we are allowed to make the approximation 

𝑓 ≅
1

1 + � 𝑆%𝑖𝑆�𝑔𝑎
�
G. (26)  

Let’s recall that for values of 𝜆 of order 1, 𝑎 is typically of order 𝜃�/𝛾 and so the condition 

above can also be expressed in terms of just parameters of the system as 𝑔 ≫ j
��h�

. 

Let’s  now note that in steady state, the ratio between the overall levels of the 

inhibitor and activator is fixed to be 𝑖/𝑎 = 𝜃%/𝜃� as both players are regulated by the 

same scheme (see equation (18)). Therefore we obtain the simple relationship 

𝑓 ≅
1

1 + � 𝑆%𝑆�𝑔
𝜃%
𝜃�
�
G. (27)  

and we can see that the value of 𝑓 only depends on the ratio of the transcriptional 

strengths, i.e. the system is network dosage invariant. We further note that the system is 

inducible as it is still fully dependent on 𝑔, with potential for achieving the full dynamic 
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range of 𝑓. In other words by changing the value of 𝑔 it is possible to explore values of 𝑓 

in the full range between 0 and 1. This expression also reveals the typical scale at which 

the external inducer has a significant effect on the state of the system: 

𝑓 ≅
1

1 + �
𝑔typ
𝑔 �

G  with 𝑔typ =
𝑆%
𝑆�
𝜃%
𝜃�
. (28)  

In Fig. S8D we show how this restriction appears in the numerical exploration we 

performed, by showing the distribution of 𝑔typ over the points that belong to the green 

regions in Fig. 4B. We note that the distribution is centered close to the midpoint of the 

curve used as a reference to quantify inducibility (Fig. S8A). 

Finally we would like to point out that the condition expressed by equation (23) is 

satisfied by any function of the form 𝑓 = 𝑓(𝑔, 𝑥`/𝑥"), i.e. any function that depends on 

the concentration of the two relevant players through their ratio. This allows one to 

understand why the regulation schemes depicted at the left and at the right of Fig. 4A 

can be both inducible and network-dosage invariant and why the system in the center 

does not have this property. In the case in which the regulation is such that the activator 

and the inhibitor act independently of each other the only way in which such a 

dependence on the ratio of the concentrations can be achieved is if  𝑆�𝑔𝑎 ≪ 1, 𝑆%𝑖 ≫ 1 

and 𝛼 = 𝛽, which yields 

𝑓 ≅ �
𝑆�𝑔𝑎
𝑆%𝑖

�
��G

. (29)  

We can see how in this limit even though the system would be network dosage invariant 

it can not be fully inducible as this approximation can not be valid for large values of 𝑔, 

as that would yield unphysical values for 𝑓. 
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SUPPLEMENTARY FIGURE CAPTIONS 

 

Fig. S1. Construction scheme of the first-order dosage-varied yeast strains. Each 

rectangle denotes a diploid strain that was dosage-halved in one of the four regulatory 

genes of the network. 

 

Fig. S2. Measurements of the network inducibility level as a function of galactose 
concentration for all the different strains analyzed. Inducibility is quantified as the 

fraction of ON-cells in a bimodal population. The genetic background of each strain is 

specified by a square on the upper left corner. Each big square contains four small 

squares that represent the four regulatory genes of the GAL network (top-left: GAL2, 

top-right: GAL3, bottom-left: GAL4, bottom-right: GAL80). Grey (white) color marks the 

presence of two (one) copies of a specific gene. A line between two strains indicates that 

the two genetic backgrounds differ by a single copy of a specific gene and the color of 

the line codifies that gene (blue for GAL3, red for GAL80, green for GAL2, and orange 

for GAL4). In all cases except for the wild type, the measurements that correspond to the 

wild type were included as a reference (gray trace). The strongest second-order 

compensation was observed when both GAL3 and GAL80 were dosage-perturbed in the 

same strain. At the third-order, irrespective of the second-order genetic background on 

which the dosage of a third gene was reduced, halving the dosage of GAL3 (GAL80) 

always decreased (increased) the inducibility levels. On the other hand, varying the 

dosage of GAL2 had a neutral effect on inducibility and halving the dosage of GAL4 

decreased it slightly. 
 
Fig. S3. Quantification of the effect of each gene. (A) Contribution of the second copy 

of each regulatory gene to network inducibility quantified as the squared difference (𝜒") 

between inducibility levels in strains that differ in one copy of the corresponding gene, 

averaged across different galactose concentrations and genetic backgrounds. (B) 

Signed contribution of the second copy of each regulatory gene to network inducibility 

quantified as the signed difference (∆) between inducibility levels in strains that differ in 

one copy of the corresponding gene, averaged across different galactose concentrations 

and genetic backgrounds. Fig. S3B is the same as Fig. 3C and it is included here for 

reference purposes. 



21 
 

Fig. S4. The genetic switch between the OFF and ON states of the GAL network. 
ON-cells express (blue dotted arrows) both the positive (Gal2p and Gal3p) and the 

negative (Gal80p) regulators of the network while the OFF-cells’ gene expression does 

not exceed basal levels. Gal4p is a constitutively expressed protein. Red arrows with 

pointed and blunted ends reflect the positive and negative effect of one network 

component on another, respectively. 
 
Fig. S5. Stochastic simulations of the proposed model. (A-F) Left subpanels: traces 

of the different variables (number of promoter in an ON state, PGALiON, and protein 

concentrations, galip) corresponding to one realization of the stochastic model proposed 

in Section V for a time of 24 h. Right subpanels: Distribution of the different variables 

after 24 h (left) and 48 h (right) across 100 independent realizations. The fact that these 

distributions are similar to each other indicates that the process has reached a steady 

state. In all cases, simulations were started from initial conditions that correspond to an 

OFF state, namely, all promoters were OFF initially and the initial protein concentrations 

were chosen as 𝜃%𝜆/𝛾  for GAL2, GAL3 and GAL80 and as 𝜃2/𝛾  for GAL4. The 

parameters used were those indicated in Sections VI and VIII and the value of ℎ used in 

this set of simulations was ℎ ≅ 2.5 h-1. 
 
Fig. S6. Effect of 𝒉  and comparison between stochastic simulations and the 
proposed analytical approximation. (A-C) Simulations similar to those described in 

fig. S5 but for a fixed galactose concentration of 0.1% w/v and for three different values 

of ℎ. (D) Fraction of ON cells according to the analytical approximation (solid line) and 

the stochastic simulations (dots). In the case of the stochastic simulations, the fraction of 

ON cells was determined by dividing the GAL3 expression profile to two regions 

separated by the gray line (fig. S5, fig. S6A-C, right subpanels) and counting the fraction 

of cells in the region that corresponds to higher expression levels. The gray line lies 

exactly in between the maximal and basal expression levels. Blue dots are the fractions 

obtained from 100 simulations at 24 h and the gray dots correspond to the results at  

48 h. 

 
Fig. S7. Inferences on the parameters that best describe the data. Metropolis-

Hastings samples of the parameter values that best describe the data, according to a 

Bayesian-inference approach (see Section VIII).  
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Fig. S8. Numerical exploration of network dosage invariance and inducibility in 
two-component systems. (A) Inducibility curve used as a reference for the numerical 

exploration described in the last part of Section IX. (B, C) Histograms of the parameter 

values corresponding to the green regions shown in Fig. 4B for the left (B) and right (C) 

configurations described in Fig. 4A. The dotted lines show what one would expect if the 

parameters had no effect in determining whether the system was in the green region or 

not (uniform distributions over the sampled values). (D) Distribution of the ratio 𝑔typ =
l���
l���

 for the points in the green regions shown in Fig. 4B. 
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Figure S8
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